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Abstract

This paper discusses Minkowski decomposition of convex polygons into their symmetric and totally asymmetric parts.
Two different types of symmetries are considered: finite-order rotations and line reflections. The approach is based on the
representation of convex polygons through their perimetric measure. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, the following problem will be ad-
dressed: given a compact, convex set P C R?, find a
decomposition of the form

P=P &P, (1

where P, is symmetric in a sense to be specified,
and where P, is totally asymmetric (i.e., P, does not
contain any symmetric parts). Here @ denotes
Minkowski addition. Matheron and Serra (1988), who
considered this problem for the case of central sym-
metry, used a perimetric representation to obtain
such decompositions. In the work of Jourlin and

Laget (1988) and Schneider (1989) one can find

" Corresponding author.

related material concerning the Minkowski decom-
position of convex sets.

In this paper we show how the approach by
Matheron and Serra (1988) can also be used to deal
with rotation as well as (line) reflection symmetry. It
turns out, however, that these two cases are essen-
tially different. In the rotation-symmetric case, the
perimetric measure of the symmetric part equals the
minimum of the corresponding rotations of the peri-
metric measure of the original shape. In the reflec-
tion-symmetric case, such a result does not hold, but
we are able to present an algorithm which finds the
symmetric part with largest area. Although our argu-
ments apply to arbitrary compact, convex sets, we
shall restrict ourselves to convex polygons in order
to obtain efficient algorithms.

Minkowski addition is one of the basic operations
in mathematical morphology (e.g. (Heijmans, 1994;
Serra, 1982)), where it is used to define dilation.
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Mathematical morphology is a powerful toolbox for
(nonlinear) image processing with a solid mathemati-
cal foundation. In most cases, specific hardware for
morphological image processing allows only neigh-
borhood operations. Therefore, the problem of de-
composing shapes (structuring elements) into smaller
parts is relevant with respect to the efficient imple-
mentation of morphological routines.

Several authors have been concerned with the
problem of decomposing (convex) shapes into sim-
pler ones, both in the continuous (Ghosh, 1990,
1993, Griinbaum, 1963; Kanungo and Haralick,
1992) and the discrete case (Ghosh, 1996; Xu, 1991;
Zhuang and Haralick. 1986). Note in particular that
every convex polygon in R? can be decomposed into
a Minkowski sum of segments and triangles (Yaglom
and Boltyansky, 1951).

The paper is organized as follows. Basic notations
and definitions are given in Section 2. In Sections 3
and 4 we present algorithms for polygon decomposi-
tions: in Section 3 for rotation symmetry, and in
Section 4 for reflection symmetry. Finally, in Section
5 we illustrate our theoretical findings with some
concrete examples and we end with some concluding
remarks.

2. Preliminaries

In this section we present some basic notation and
terminology which we use in the sequel of the paper.
P(R?), or £ for short, denotes the family of convex
polygons in R?. As in this paper the exact location
of a polygon is irrelevant, we define an equivalence
relation 7 on £ two polygons P and Q are
said to be equivalent, P = Q, if they differ only by
translation.

A convex polygon P CR? can be represented
uniquely by specifying the position of one of its
vertices and the lengths and directions of all its
edges. By p; we denote the length of edge i and by
u; the vector orthogonal to this edge: see Fig. 1. The
angle between the positive x-axis and u; is denoted
by Zu;. Since the location of P is not important, it
is sufficient to give the set {(u;,p,).(uy,p,), ...,
(u,.p,)}, where n=n, is the number of vertices of
P. This set, denoted by M, is called the perimetric
representation of P. In Fig. 1 we give an illustra-
tion.
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Uy

Ug Ug

Fig. 1. Perimetric representation of a convex polygon.

A closely related representation of a convex poly-
gon is the so-called perimetric measure M(P,- ) (see
e.g. (Matheron and Serra, 1988)):

Cifu=u,,
M(P.u)= P =
0  otherwise.
We point out that the perimetric measure is a special
case of the concept of area measure (see (Schneider,
1993)). It is easy to see that, for every convex
polygon P, the identity

Y M(Pu)u=0 (2)

holds; here the sum is taken over all u for which
M(P,u) # 0. Moreover, this equality is sufficient for
every discrete positive function defined on the unit
circle to be the perimetric measure of a convex
polygon. In fact, this relation expresses that the
contour of P is closed.

The operation which plays a major role in this
paper is Minkowski addition *“ ®’’ given by

A®B={a+bla€A, be B},

for two arbitrary sets A,B C R?. It is a well-known
fact that the set of convex polygons 2 is closed with
respect to Minkowski addition (see Chapter 1 of
(Hadwiger, 1957)), and, moreover, that the
Minkowski sum of two convex polygons can be
computed by merging their perimetric representa-
tions; see e.g. (Ghosh, 1993; Griinbaum, 1967).
Mathematically, this amounts to the following rela-
tion:
M(P®Q.,u)=M(P,u) +M(Q.u),
forP,0ePandueS'. (3)

Here S' denotes the unit circle in R2.
By G we shall denote the group of linear trans-
formations on R?. Two important subsets of G are
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R, the rotations around the origin (which forms a
subgroup), and L, the reflections with respect to
lines through the origin. This latter collection is not a
subgroup. Denote by r, the rotation around the
origin over angle 6. If 6 =2 /m then we speak of a
rotation of order m. Denote by [, the reflection with
respect to the line through the origin which makes an
angle « with the positive x-axis. We denote this line
of reflection by L,. Finally, we denote by I C G the
collection of isometries consisting of all rotations as
well as all line reflections.

Definition 1. A transformation e in G is called a
symmetry of a polygon P if e(P)= P; we also say
that P 1s e-symmetric.

A polygon P CR? is called rotation-symmetric
of order m if P is r,_ , -symmetric. If m =2, then
we say that P is central symmetric. Central symme-
try has been investigated in detail by Griinbaum
(1963) and Matheron and Serra (1988). A polygon P
is called reflection-symmetric with respect to axis
L, if P is [ -symmetric.

Definition 2. (a) A transformation e is called a
cyclic transformation of order m if

e"(x)=ux, forevery xR (4)

(b) A transformation e is called a strongly cyclic
transformation of order m if it has the property

x+e(x)+ - +e" (x)=0,
for every x € R?. (5)

It is easy to see that every strongly cyclic trans-
formation of order m is also cyclic. The converse is
not true, however. Finite-order rotations are strongly
cyclic, whereas line reflections are cyclic (of order
2), but not strong. Note, furthermore, that g~ 'eg is
(strongly) cyclic if e is (strongly) cyclic and g € G.

3. Rotation decomposition

Recall that M(P,-) is the perimetric measure of
P. If P2 and g</ (ie., g is a rotation or a
reflection), then

M(g(P),u)y=M(P,g”"(u)) (6)

Definition 3. Let ¢ €/ be given. A convex polygon
P is said to be totally e-asymmetric if there does not
exist a nontrivial e-symmetric polygon @ and a
polygon R such that P=Q ® R.

Proposition 1. Let e be a cyclic transformation of
order m. If

min M P, k ' =0,
k=0,1~.1...m—1 ( € (4))
forevery u € S', -

then the polygon P is totally e-asymmetric.

Proof. Assume that e is cyclic and that Eq. (7)
holds. Suppose that P = Q @ R, where Q is e-sym-
metric. Since M(P,u) = M(Q,u) + M(R,u), we get
that

M(P.e*(u))=>M(Q.e*(u))=M(Q.u).
But this contradicts Eq. (7); we conclude that P is
totally e-asymmetric. O

Assume now that e is a strongly cyclic transfor-
mation of order m, and that P is a convex polygon
which is not totally e-asymmetric. Define
M(u) = min M(P,ek(u)),

k=0.1...., m—1

for every u € S'. (8)
Let u be such that M(u)+#0; as P is not totally
e-asymmetric, such a u does exist. Now M(e*(u)) =
M(u), and

m—1 m—1

Y M(ef(u))er(u) =M(u) ), e*(u) =0,
k=0 k=0
since e is strongly cyclic. This yields that

Y M(u)u=0,

ues'

thus M is the perimetric measure of an e-symmetric
polygon PS. It is obvious that M(P,u) — M(u) > 0,
with equality everywhere iff P = P*. Suppose M(-)
# M(P,-); we get that M(P,-)— M(-) is the peri-
metric measure of a convex polygon, which we
denote by Q. Now, for every u € §',

i k
k=0-1IT1.1.1j“m— 1 M(Q’e (u))

= omin  [M(Puet () = m(e ()]

in _ M(P.e‘(u)) =M(u) =0.
k=0v1r?l.r.l,m—l ( € (u)) (u)

i
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This yields that Q is totally e-asymmetric. We write
P? = Q. Observe that PS=P if P is totally e-
asymmetric. The following result has been estab-
lished.

Proposition 2. If e is a strongly cyclic transforma-
tion of order m and if P is an arbitrary convex
polygon, then P can be decomposed as

P=Pfo® P, 9

where P’ is e-symmetric and Pf is totally e-asym-
metric. The perimetric measures of P{ and P are
respectively given by
M(Pfu) = min  M(P.e*(u)),

k=0.1,..., m—1

M(PSu)=M(P,u)—M(Pu). (10)

The polygon P is totally e-asymmetric (i.e., Pf = P)
if and only if Eq. (7) holds. Note that in the latter
case P ={0}.

See Fig. 7 for an illustration.

The decomposition in Eq. (9) is a generalization
of a result by Matheron and Serra (1988) where they
consider the central symmetric case.

4. Reflection decomposition

When we consider line reflections, the decompo-
sition problem is more difficult. Namely, in this

case, the function M given by Eq. (8) is not the
perimetric measure of a convex polygon, in general,
since Eg. (2) is not satisfied. Here we shall describe
an algorithm which, for a given line reflection e = [,
yields a unique decomposition

P=Pf®P;, (11)

such that P’ is [ -symmetric and has the largest
possible area. The basic idea is captured by Fig. 2.
The line L} which is orthogonal to L, separates the
plane in a left part H, and a right part H; see Fig.
2(a). Furthermore, we put H’ =L} . We are inter-
ested in all directions « €S' in the support of
M(P,-) for which I (u) =y lies in the support as
well. In Fig. 2(b) we have drawn all these vectors.
The vectors w,; and u',, =1 (u, ) (i=12,....k)
lie in H}, and the vectors u_, and u_, =1 (u_,)
(i=12,...,0) liein H].If there exist vectors in H’
with the given properties, they will be denoted by u,
and u},. The vector u, , is the vector in H, which
makes the largest angle with the line L. Further-
more, it is possible that £ u,, = £, , = o and that
Ly =Lu_;=a+w.

Let us suppose that the set comprising u,;, ',
Uy, Uy, u_j, W_j, with i=1,.. kand j=1,...,1
contains at least three different vectors and k,/> 0.
Then the decomposition in Eq. (11) has a solution
which can be found by the following algorithm (see
Proposition 3). The basic idea is to choose pairs

Fig. 2. L, is the line of reflection. The line L; separates vectors u in the perimetric representation for which also ' = 1, (u) is present, into
two subclasses: u,;.u';; at the right and u_j,u"_; at the left. More details can be found in the text.
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u,; W, and lengths p ,=p' . as well as pairs
u_;,u_; and lengths p_, = p’_, such that
ZPH(“H tu,) = - Zp—i(u—i +u_;). (12)
Notice that u; + 1/, ; is directed along L, in the
positive direction, whereas u_, +u_, is directed
along L, in the negative direction. Eq. (12) ex-
presses that the collection consisting of the pairs
(uyioped)y Woppi)s (”—j,P—/), (ul—j’p—j)’ along
with (uy, py), (4, py) (if present), defines a perimet-
ric measure. In general, there will be more than one
solution to Eq. (12). We have to find the solution for
which the area of the resulting polygon P is maxi-
mal.

We define ¢, 1 <i<k, as follows:

{ min{M(P,u_).M(Pu. )} ifu, #u,;,
q+i=

IM(P,u.,),

ifu, =,
(13)

Observe that u, ;= u',, implies i= k. The values

g_;» 1<i<l!, are defined similarly, and ¢,=

min{ M(P,uy), M(P,u,)}, if u, does occur. Further-
more, we define

k
S.= Z gy lug +u, ]l and

=1

!

S_=3 q_,Mu_, +u_|.

i=1

As we noted earlier, to construct the perimetric

measure of a reflection-symmetric polygon, we have

to satisfy Eq. (12).

There are three possibilities:

- S.=S_:put p_,=q_, and p,,=qg.;; now the
two vectors in Eq. (12), both directed along L,,
have the same length and therefore Eq. (12) holds;

- §,>8_: we take p_,=¢q_; and choose p,; <
q.; such that Eq. (12) holds and the area of P is
maximal;

- S,<S_:analogous (p,,=qg.,).

We present our algorithm for the case S, > S_;
the case S, < S_ is analogous. Since

oy + ol < H“+(i+ e ol
for every i (the same holds for u_;), the algorithm
starts with the smallest indices in order to obtain a
maximal area for P,

Define the set M to contain the pairs (u_;,p_;),
(v_,,p_,), where p_,=q_, This set corresponds

with the left part of a convex polygon (see Fig. 3).
The idea is to ‘‘complete’” this polygon to the right
by adding vectors with direction u_;, '/, ; and length
P+ <q., until Eq. (12) is satisfied.

Algorithm 1. (Case that §,> S_.)

M:= {(u_,wp_,')»(ul_iyp_,-) ! i= 1,2,...,1};
add (uy, py), (uy,py) to M if present;

S:=0;

=1

Py =g+

AS=p,, '““+l +“’+1“;

while (S+ AS<S_){
M=MU {(u+l’p+i)’(tl/+i’p+l)};

S=84+AS;

i=1+1;

p+1 = (1+i;

AS=p,,- ””+i + “,+i”;

}

p=(S_—8)/cos(Lu,,— a)
(compute the remainder)

M=MU{(u,, p)d p}

It has been explained that the equality S_= S, must
hold to have a perimetric measure corresponding
with a reflection-symmetric polygon. This explains
our stopping criterion S+ AS<S_. Now the last
two lines in the algorithm are necessary to obtain
S.=S5_.

The perimetric measure M associated with the
resulting perimetric set M represents an [ -symmet-
ric convex polygon PS, and the difference M(P,-)
— M(-) represents the asymmetric part PS.

It remains to be shown that Algorithm 1 yields the
unique decomposition with P having maximal area.
This is demonstrated by the following two observa-
tions. First we explain that, starting with a perimetric
set M (first line of Algorithm 1) the algorithm yields
the polygon with maximal area whose perimetric set
contains M. The set M yields a left part of an
{-symmetric polygon. Our algorithm extends this
polygon rightwards in a symmetric fashion, but it
does so by choosing a path from point A on L} (see
Fig. 3) to the line L, which has smallest descent,
thus maximizing the area. This means that our algo-
rithm is optimal if we can show that the initial
choice for M is optimal; see Fig. 3.

However, any other choice for M in combination
with our algorithm leads to a perimetric measure M’
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Fig. 3. Construction of reflection-symmetric part with maximal
area.

which i1s smaller than the perimetric measure M
obtained from Algorithm 1: M'(u) < M(u) for every
u € S'. This implies, however, that the area of the
corresponding polygon is smaller, too.

Thus we have shown that Algorithm 1 yields the
decomposition in Eq. (11) where P¢ has maximal
area. See Fig. 7 for an illustration.

Proposition 3. Given a line reflection e =1, and a
convex polygon P, there exists a solution of Eq. (11)
such that PS is | -symmetric and has largest possi-
ble area, if and only if k2 1, 1> 1, and the set S
comprising u.;, Wy, Uy, o, u_, w_, with i=
L....,k and j=1,...,l, contains at least three dif-
ferent vectors, and in this case Algorithm 1 yields a
solution.

Observe that, when the assumptions above are not
satisfied, then the algorithm yields an M which is
empty or M = {(ug, py).(1}, py)} depending on
whether the vectors u,, 1}, exist or not. In the first
case, there does not exist a decomposition, in the
second case we find that P is a line segment, which
has zero area.

For most angles o the condition in Proposition 3
will not be satisfied. To find an upper estimate for
the number of angles which have to be checked if P
contains n =n, vertices, we have to consider the
angles «; ;= 3(Lu;+ Zu)modw, with 1<j<i
< n. Namely, u; is the reflection of u; with respect
to the line that makes an angle «; ; with the positive
x-axis. An angle a is a candidate solution if there
exists at least two pairs i,,j, and i,,j, such that
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@; ; =a; ; = o Furthermore, it is not allowed that
both i, =j, and i, =j,. An upper bound for the
number of candidates is $X"_,i = tn(n + 1), where
n=np.

5. Examples and concluding remarks

In this final section we present some concrete
examples to illustrate our results.

Let us consider first an example which illustrates
the decomposition according to Algorithm 1. Con-
sider the polygon P depicted in Fig. 4(a). Suppose
that the reflection line coincides with the OX axis.
The perimetric representations of original and re-
flected polygons are given in Fig. 4(b) and (c),
respectively. The minimum of these perimetric repre-
sentations computed according to Eq. (13) is pre-
sented in Fig. 4(d). Since this set contains 5 vectors,
Proposition 3 says that there exists a Minkowski
decomposition of the original polygon.

The resulting vectors S, and S_ computed for
the right and left half-planes H* and H~ are shown
in Fig. 5(a). The sum of S, and S_ does not equal
0 and therefore the set shown in Fig. 4(d) is not a

@ @

Fig. 4. (a) Polygon P; (b) perimetric representation of P: (c)
perimetric representation of the polygon /,( P); (d) resulting set of
vectors.



A. Tuzikov, HJ.A.M. Heijmans / Patrern Recognition Letters 19 (1998) 247-254 253

@ W

(© )

Fig. 5. Demonstration of Algorithm 1. (a) Vectors S, and S_;
(b) initial step of the algorithm; (c¢) first step of the algorithm; (d)
second step of the algorithm.

perimetric representation. To extract the perimetric
representation from this set we apply Algorithm 1.

Since vector S_ is shorter than S, the initial set
M contains only vectors from the left half-plane; see
Fig. 5(b).

At the first step of the algorithm we add two
vectors from the right half-plane (see Fig. 5(c)).

At the second and last step we add a part of the
third vector from the right half-plane. The resulting
perimetric measure is shown in Fig. 5(d). This peri-
metric measure defines a reflection-symmetric poly-
gon (Fig. 6) which is the solution of the decomposi-

Fig. 6. Reflection-symmetric polygon which is the solution of the
decomposition problem.

-0
oD

Fig. 7. From left to right and top to bottom: the original polygon
P and its decomposition with respect to rotation over 180°
rotation over 120° and reflection in the vertical axis.

0
0

tion problem with respect to the fixed reflection
plane.

In Fig. 7 we depict a convex polygon and three
decompositions associated with three different sym-
metries: rotation over 180° (central symmetry), rota-
tion over 120° and reflection with respect to the
vertical axis.

At first glance, one might expect that the triangle
which represents the symmetric part with respect to
rotation over 120° should be contained in the sym-
metric part with respect to the line reflection. How-
ever, as we explained, our algorithm corresponding
with line reflections yields the decomposition in
which the symmetric part has maximal arca: as a
result, not the entire triangle is included in the
symmetrical part but only part of it.

Having achieved a decomposition like in Eq. (9)
or Eq. (11), we can define a functional u: P X E —
[0,1] by

V(FR)

V) "

where V(P) denotes the area of P, and where E
consists of all finite-order rotations (in Eq. (9)) or
line reflections (in Eq. (11)). Heijmans and Tuzikov
(1996) have shown that u has the following proper-
ties for PER, e E:

1. w(P,e)=pu(P,e)if P=P';

2. u(P,e) = ule*(P)e), k>1;

3. p(P,e)=1iff P is e-symmetric;

4. u(P,e) = u(h(P),heh™"), hel.

u(P.e)=
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We call functionals o which satisfy these proper-
ties and which, in addition, are continuous in the first
variable with respect to the Hausdorff metric, /-in-
variant E-symmetry measures (Heijmans and
Tuzikov, 1996). Note, however, that u defined in
Eq. (14) is not continuous. We present a systematic
treatment of symmetry measures for convex sets
based on Minkowski addition and the Brunn-
Minkowski inequality (Heijmans and Tuzikov, 1996).
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